
Pergamon 

lnr. J. Hear Man Transfer. Vol. 37, No. 17, DD. 2761-2769. ,994 
Copyright 0 lY94s&evier Science Ltd 

Pnnted in Great Bntain. All rights reserved 
0017-9310194 $7.oo+o.no 

0017-9310(94)EOO27-R 

Mixed convection flow in curved annular ducts 
HOON KI CHOI 

Samsung Heavy Industries Research Institute, Munji-Dong, Yusung-Ku. Taejon. Korea 

and 

SEUNG 0. PARKt 
Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology. 

Kusong-Dong, Yusung-Ku, Taejon, Korea 

(Receioed 21 October 1993 and injinal,form 13 Januar.~ 1994) 

Abstract-Mixed convection flows in concentric curved annular ducts with constant wall temperature 
boundary condition are studied numerically. The flow is assumed to be fully developed so as to maintain 
a constant streamwise pressure and temperature gradient. Key parameters for the flow are the radius ratio 
(ratio of the inner core radius to the outer pipe radius), the Dean number, and the Grashof number. 
Computations are carried out for flows of various radius ratio with Dean numbers in the range O-900 and 
Grashof numbers of 12.5 and 12 500. The secondary flow patterns, the streamwise velocity profiles and the 
heat transfer coefficients are presented. Effects of the Dean number and the Grashof number on the flow 
pattern, on the friction ratio (ratio of the friction for a curved annular duct to that for a straight annular 
duct flow), and on the heat transfer property are discussed based on the computational results. It is found 
that both the friction ratio and the Nusselt number ratio are strong functions of the radius ratio and the 
Dean number when Gr = 12.5, while these ratios do not change much with the radius ratio and the Dean 

number when Gr = 12 500. 

1. INTRODUCTION 

A CONSIDERABLE amount of research effort has been 

directed toward the study of flow in curved pipes and 

thus numerous works have been published as can be 
found in the review article of Berger et al. [l]. Among 
these are the works concerning the mixed convection 
flow in curved pipes with heat transfer. Yao and 
Berger [2] investigated the fully developed laminar 
flow in a heated curved pipe by obtaining the power 
series solutions using regular pertubations in the Dean 
number and the product of the Reynolds and Rayleigh 
number. Prusa and Yao [3] presented numerical solu- 
tions of the mixed convection flow in a mildly coiled 
tube for various values of the Dean number and the 
product of the Reynolds number and the Rayleigh 
number. They obtained a flow-regime map which 
illustrates the centrifugal force dominant region, the 
buoyancy dominant region, and the region where both 
the centrifugal force and the buoyancy are important. 
Futagami and Aoyama [4] numerically and exper- 
imentally studied the laminar flow and heat transfer 
in a helically coiled tube for various combinations of 
the Dean number, the Prandtl number, and the prod- 
uct of the Reynolds and Rayleigh numbers. The sec- 
ondary flow patterns and the average Nusselt number 
were presented. 

Flows in curved annuli (i.e. tube-in-tube) with or 

t Author to whom correspondence should be addressed. 

without heat transfer, however, have received rela- 
tively scant attention. The flow in a curved annulus 
significantly differs from that in a curved circular tube 
owing to the presence of an inner wall boundary. 
Choi and Park [S] studied numerically the developing 
laminar flow in curved annuli. Evolution of secondary 
flow and the effect of radius ratio on the flow devel- 
opment were discussed in that work. Garimella et al. 
[6] investigated experimentally the forced convection 
heat transfer in coiled annular ducts in laminar and 
transitional flow regimes. Analytical solutions in 
power series form for mixed convection flow in mildly 
curved annular ducts with constant wall temperature 
condition were given by Karahalios [7]. In that work, 
however, the effect of the radius ratio on the flow 
was not properly treated. This deficiency was recently 
corrected by Park and Choi [8]. 

The interplay between the centrifugal force and the 
buoyancy in establisliing the flow is an important 
aspect of the mixed convective flow in a curved annu- 
lus of a given radius ratio. The analytical approach, 
however, is rather limited to elucidate this complex 
interplay for a wider class of flows having various 
combinations of the Dean and the Grashof numbers. 
In this study, we thus attempt to investigate the mixed 
convective flow of curved annuli with various par- 
ameters by numerically solving a proper set of gov- 
erning equations and to assess the effects of the cen- 
trifugal force and the buoyancy on the secondary flow 
and heat transfer. 
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NOMENCLATURE 

CP specific heat at constant pressure Greek symbols 
Gr Grashof number based on hydraulic radius ratio, r,/r, 

radius, g/hr;/v2 ; coefficient of thermal expansion 

9 gravitational acceleration 6 curvature ratio based on the outer 
k heat transfer coefficient radius, r,/R 
k thermal conductivity 4I curvature ratio based on the hydraulic 
,Vu overall average Nusselt radius, r,jR 

number 0 non-dimensional temperature 
Pr Prandtl number K Dean number, 2Re L&f,” 
P pressure P density 
R radius of curvature of the T temperature difference 

bend kinematic viscosity 
Rl? Reynolds number based on hydraulic ; stream function for the secondary 

radius, rh W,,,jv flow. 
I’, inner radius of the annulus 

r, outer radius of the annulus Subscript 

rh hydraulic radius, r, - r, C curved annulus 
T temperature m mean value 

T, reference temperature S straight annulus 
t time W wall surface. 
z’,, L;~, tlg r-, 4-, and O-components of the 

non-dimensional velocity Superscript 
r, 4, 0 toroidal coordinates. * dimensional quantity. 

We assume the flow to be fully developed both eration. As mentioned earlier, we further assumed 
hydraulically and thermally as in previous works [2, that the flow was fully developed under the constant 
7, 81. A pertinent characteristic length for the fully streamwise pressure and temperature gradient con- 
developed flow of the concentric annular duct is the ditions. The annular wall boundaries maintained a 
hydraulic radius defined by rh = r. - r, [8]. Hence, the constant temperature at a given streamwise station. 
Reynolds number, the Dean number, and the Grashof The dimensionless governing equations describing the 
number in this work are all based on rh. 

2. NUMERICAL DETAILS 

conservation of mass, momentum 
respectively given as follows : 

A toroidal coordinate (r, 4, 0) system as shown in 
Fig. 1 was employed to formulate the problem. The 
fluid was assumed to have constant physical properties &I, 1 8 d 
and to behave in accordance with the Boussinesq 2; + z z (rBt?I + G (&v+) 

approximation. The flow was also assumed to be 
1 

and energy are 

= 0, (1) 

steady and laminar, and to have no internal heat gen- 
u; su; COST ap 

_-_~= 
r B 

(2) 

FK. 1. Toroidal coordmate system for curved annulus. 
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where : 

S, = -k{-[(2%+u,)/r’]+6o,sin$/rB 

- 6’ cos +(u, cos 4 - urn sin 4)/f? 
I 

S+ = - $ I--[(2$ -ri,)jr’]-*u,sind/rB 

- d2 sin b(u, cos 4 -u+ sin 4)/B” 
1 

1 6 a ra@ se= -~-- -- 
( ) RoPrrBM B 80 

and 

B = l+&cos4. 

The variables in the equations above were non- 
dimensionalized as follows : 

r* = r,r (length) ; (64 

u*= WV r 0 r> v$ = W&, us* = W,u, (velocity) ; 

(6b) 

p* = p Wip (pressure) ; (6~) 

T, - Z’,, = z (temperature difference) ; 

T, - T = 70 (temperature). (6d) 

The reference velocity W,, the reference Reynolds 
number R,, and the reference Grashof number Gr, 
employed in equations (2)~(6) were defined as 

w, = [_5(_!!c)y2, (7) 

R, = J&l 
v ’ (8) 

Gr, 2@&. 
112 (9) 

The flow characteristics dictated by the secondary 
motion are expected to differ by the relative import- 
ance of the centrifugal and the buoyancy forces. To 
examine the property of detailed flow features, com- 
putations were carried out for the flows with the Dean 
number varying in the range 0 < K < 900, and the 
i-adius ratio in the range O.lHU3. The Grashof number 
was set to be either 12.5 or 12 500. The Prandtl number 

I was taken to be unity for all the cases. 

I 

0 

FIG. 2. Grid effects on the streamwise velocity profile along 
the line of symmetry (4 = 0”) for c( = 0.5, IC = 822. 

Equations (l)-(5) are subjected to the following 
boundary conditions : 

v,=u~=v,=O=O atr=ccandl. (10) 

Local time derivative terms in the equations above 
were added mainly for computational convenience. 
For the numerical integration of equations (l)-(5) to 
obtain steady-state solutions, we adopted Chorin’s [9] 
artificial compressibility method where an artificial 
compressibility term (an unsteady pseudo-pressure 
term) was added to equation (1). All the spatial 
derivatives were centrally differenced and the pseudo- 
time derivatives were discretized by the forward 
difference formula. The resulting algebraic system was 
solved by a factored ADI scheme as in Soh and Berger 
[lo]. From 22 to 28 grid points along radial lines, 
depending on the radius ratio, were distributed 
unevenly to place more points in the viscous wall 
region, and 62 grid points were uniformly distributed 
in the circumferential direction. As a check for grid 
independency of solution, we performed the cal- 
culation on two different grid systems for the case of 
rl = 0.5. A typical result is contained in Fig. 2. We see 
that the 24 x 62 grid system yields a velocity profile as 
accurate as that with the 48 x 124 grid system. 

3. RESULTS AND DISCUSSION 
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FIG. 3. Plots of the iso-pressure distributions for K = 822 and 
Gr = 12 500 : (a) tl = 0.1 ; (b) c( = 0.5 ; and (c) CI = 0.8. 

Pressure distribution 
When the buoyancy is absent in a curved annular 

flow, we expect the iso-pressure lines to be nearly 
vertical (normal to the line of symmetry which is hori- 
zontal in our coordinate system of Fig. 1) since the 
pressure gradient balances the centrifugal force. On 
the other hand, when only the buoyancy force is 
present (that is, we consider the case of a straight annular 
flow), the iso-pressure lines would be horizontal (ver- 
tical to the direction of gravity) since the pressure 
gradient is required to balance the buoyancy force. 
When both the centrifugal and the buoyancy forces 
take part in establishing the secondary flow, the iso- 
pressure lines would be inclined to the line of sym- 
metry as depicted in Fig. 3. Figure 3a, b and c illus- 
trates the iso-pressure lines for the cases of CI = 0.1, 
0.5, and 0.8, respectively. The Dean number, IC, is 822 
and the Grashof number, Gr, is 12 500 for all these 
cases, both numbers being based on the hydraulic 
radius. We clearly see that the inclination angles of 
the iso-pressure lines shown are about the same. This 
suggest that the inclination angles of the iso-pressure 
line are essentially determined by the ratio of the 
(effective) Dean number to the Grashof number. We 
are, however, reminded that the streamwise pressure 
gradient is dominantly governed by the radius ratio 
[8]. The dashed lines in Fig. 3 denote the dividing line 
which separates approximately the near-symmetric 
vertical cells in the cross-sectional streamline contour 
(see Figs. 4-6). A dividing line is approximately nor- 

ma1 to the iso-pressure lines and passes through the 
center of the annular cross-section. 

Secondary Jlow pattern 
The stream function for the secondary flow II/ is 

defined by 

v, =$$(B$), v4 = -;;(B$). (11) 

Figure 4 illustrates the secondary flow pattern for 
the case of CI = 0.1. When the Grashof number is 
12.5, the flow motion is seen to be dominated by the 
centrifugal force as depicted in Fig. 4a-i and b-i. 
The secondary flow consists of two pairs of counter- 
rotating vortices placed symmetrically with respect to 
the plane of symmetry. The fluid particles near the 
inner and outer wall region move inward (i.e. toward 
the center of the curvature) owing to the pressure 
gradient set up by the centrifugal action of the out- 
ward moving particles in the core region. The sec- 
ondary flow patterns of Fig. 4a-i and b-i characterized 
by the two symmetric vortices below and above the 
horizontal line are very similar to those observed in 
Choi and Park’s work [9] for the developing flow with 
zero Grashof number. We further note that the center 
of the vortices moves toward the inside bend as the 
Dean number increases. When the Grashof number is 
12 500, the vertical cells become inclined as seen 
in Fig. 4a-ii and b-ii ; the degree of inclination changes 
with the ratio of the Dean number to the Grashof 
number. For the case of small Dean number and large 
Grashof number, the vertical cells line up almost ver- 
tically as shown in Fig. 4a-ii. An interesting feature 
of the secondary flow for the case with significant 
buoyancy effect (Fig. 4a and b-ii) is that the secondary 
flow streamlines become more complicated when com- 
pared to those with negligible buoyancy effect (Fig. 4a 

(i> 

(ii) 

(b) 

FIG. 4. Isostream streamline contours for a = 0.1 : (a) 
K = 95; (b) K = 822; (i) Gr = 12.5; and (ii) Gr = 12 500. 
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(9 

(4 

(ii) 

lb) 
FIG. 5. Isostream streamline contours for a = 0.5: (a) 

K = 95; (b) K = 822; (i) Gr = 12.5; and (ii) Gr = 12 500. 

and b-i). Note that a streamline encircles the inner 
cylinder in Fig. 4a-ii and b-ii. The vertical cells are 
asymmetric. This asymmetric property of the vertical 
cells for the case of curved pipe flow when the Grashof 
number is large has been demonstrated by Futagami 
and Aoyama 141. We comment here that the concept 
of a dividing line which separates a pair of vertical cells 
confined in a half plane becomes ambiguous because 
of this asymmetry if the buoyancy effect is significant. 
In an approximate sense, however, the dividing line 
(if we define roughly the dividing line to distinguish 
the half plane containing the two centers of the vor- 
tical cells) turns away from the C$ = O”-180” (hori- 
zontal) line toward the Q, = 90”-270” (vertical) line 
as the Grashof number increases for a given Dean 
number. 

Figure 5 shows secondary flow streamlines when 
a = 0.5. The (effective) Dean and Grashof numbers 
are the same as those of the corresponding cases of 
Fig. 4. Characteristic features such as the number of 
vertical cells, the inclination of the dividing line, and 
the symmetry property seen in Fig. 5 remain 
unchanged from those of Fig. 4. However, the strength 
of the inner cell vortices is seen to increase con- 
siderably owing to the larger radius of the inner pipe 
for these cases. 

As an extreme case, the secondary flow when 
a = 0.8 is illustrated in Fig. 6. In contrast to the two 
cases discussed above, the viscous effect is anticipated 
to be much greater because of the narrow gap between 
the inner and outer walls. Topological features of the 
flow, however, remain unaltered for this case also. 
The strengths of the inner and outer vortices are about 
the same. 

Streamwise velocity 
Owing to the secondary motion, the streamwise 

velocity profile for a curved annulus becomes con- 

(a> (b) 

2165 

0) 

(ii) 

FIG. 6. Isostream streamline contours for a = 0.8: (a) 
K=95;(b)K=822;(i)Gr= 12,5;and(ii)Gr= 12500. 

siderably different from that of a straight annulus. 
For example, the position of the maximum streamwise 
velocity shifts toward the outside bend for a curved 
annular flow. A convenient measure to quantify the 
shift of the streamwise velocity is the first moment of 
the streamwise velocity about the center of the annulus 
[ 111. The first moment in the x-direction is given by 

(l-3 

The shift of the streamwise velocity in the y-direction 
May is similarly defined. If the streamwise velocity 
profile is uniform or symmetric about the center of 
the annulus, MO, and MO, will be zero. MO, would be 
positive if the average streamwise velocity over the the 
outside half plane is greater than that over the inside 
half plane ; Mq, would be positive if the average 
streamwise velocity over the upper half plane is greater 
than that over the lower half plane. 

Figure I shows the change of MO, and MO,,, when 
a = 0.1, with the Dean number for the two given 
Grashof numbers. If the Dean number is very small 
so that the square rodt of it becomes smaller than 
about 5, MO, is seen to be negative, indicating that 
the streamwise flow shifts toward the inside bend. For 
this case of a very small Dean number, the flow pass- 
age is very loosely curved so that the viscous force 
rather than the centrifugal force is expected to be most 
influential in shaping the streamwise flow. Since the 
wall boundary along the streamwise direction of the 
outside half plane is longer than that of the inside half 
plane, the streamwise flow of the outside half plane 
experiences more friction than the flow of the inside 
half. The shift of MO, for the region of small Dean 
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-0.211 
0 10 EGI/p 20 30 

FIG. 7. Variation of first moment of streamwise velocity for 
a = 0.1. 

number becomes severer if the radius ratio becomes 
larger owing to the increased role of viscous forces as 
seen in Figs. 8 and 9. The appearance of a negative 
value of Mo, in the developing flow of a loosely curved 
annulus was also discussed in our earlier work [5]. 
The variations of MO, and MO, with the Dean number 
for the cases of CI = 0.5 and 0.8 are shown in Figs. 8 
and 9, respectively. As the Dean number increases, 
the streamwise flow shifts to the outside bend so that 
MO, becomes positive. The increase of MO, with the 
Dean number is rapid around the cross-over point 
from the negative to the positive value. For the region 
of large Dean number, the increase of Mo,~ is some- 
what gradual. Comparing the MO, curves for the two 
Grashof numbers, we find that the buoyancy force 
tends to slow down the outward shift of the stream- 
wise flow ; the increase of MO, with K is milder when 
the Grashof number is larger. 

FIG. 8. Variation of first moment of streamwise velocity for 
GI = 0.5. 

-0.2 II 
0 10 %I/1 20 30 

FIG. 9. Variation of first moment of streamwise velocity for 
a = 0.8. 

The effect of the Grashof number on the shift of 
streamwise velocity is better illustrated by the varia- 
tion of MO,,. The buoyancy force induces downward 
secondary motion in the core region as the secondary 
flow patterns illustrate, and hence renders MO, nega- 
tive. Figures 7-9 show that h40,~ is zero when 
Gr = 12.5 while it is negative when Gr = 12 500. MO, 
curves for the higher Gr indicate that the downward 
shift represented by the negative values of MO, first 
increases with K for the small Dean number region 
and then decreases with K for the higher Dean number 
region. This reveals an interesting fact that the 
increase of curvature for a loosely curved flow 
enhances the downward shift of the streamwise flow 
due to buoyancy while the increase of curvature for a 
non-loosely curved flow mitigates the downward shift. 

We also notice, from Figs. 7-9, that the Dean num- 
ber at which MO,. becomes zero increases with the 
radius ratio ; when the radius ratio increases, the vis- 
cous force increases accordingly and this deters the 
centrifugal force from taking effect so that the Dean 
number of the cross-over point of Mo, increases. Simi- 
larly, the Dean number at which MO,” becomes mini- 
mum (when Gr = 12 500) gets larger as the radius 
ratio increases. 

Temperature distributions 
An isometric representation of the non-dimensional 

temperature, 0, is shown in Fig. 10 for the case of 
r = 0.1. When the buoyancy force is negligible 
(Gr = 12.5), the maximum temperature occurs at a 
point near the outside bend as depicted in Fig. lOa-i 
and b-i. For the case of Gr = 12 500, the location of 
the maximum temperature moves towards the bottom 
wall as seen from Fig. lOa-ii and b-ii. The tempera- 
ture gradient near the outside wall becomes steeper 
as the Dean number increases. The temperature dis- 
tributions appear to be symmetric about the dividing 
line for all the cases shown. 
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(4 (b) 

(9 

(ii) 

FIG. 10. Isothermal lines for r = 0.1 : (a) K = 95; (h) 
K = 822 ; (i) Gr = 12.5 ; and (ii) Gr = 12 500. 

Friction ratio 
The secondary flow in a curved duct is generally 

known to result in a larger pressure drop in the 
streamwise direction when compared to that for a 
straight duct. Suppose that the flow rate for a curved 
annulus and that for a straight annulus are the same. 
The friction ratio fc/,fi, the ratio of the streamwise 
pressure drop in the curved annulus to that in the 
straight annulus, is given by 

(13) 

where s* is the dimensional streamwise distance in the 
straight annular duct. 

Variations of the friction ratio with ti’ ’ for some 
given values of a and Gr are plotted in Fig. 11. Except 
for the low Dean number region, the friction ratio is 
seen to vary linearly with K”‘. For curved pipe flows, 

FIG. 1 I. Variation of the friction ratio. 

this tendency has been observed by Barua [12], Mori 
and Nakayama [13, 141, and Soh and Berger [lo]. 

When Gr = 12.5, the friction ratio becomes smaller 
as TV increases for a given value of K. The friction ratio 
is greatest for a curved pipe flow (a = 0). When n 
becomes larger. the gap between the outer and inner 
wall becomes narrower, resulting in a strong viscous 
force. This weakens the effect of the centrifugal force 
and hence the secondary flow becomes less vigorous. 
We expect that ,f& -+ 1 for the limiting case a + 1. 
When Gr = 12 500, the variation of the friction ratio 
with the radius ratio is quite contrary to the case of 
Gr = 12.5 ; the friction ratio for a given K decreases as 
7 mcreases. We also find that the friction ratio for the 
case of Gv = 12 500 is much smaller than that for the 
case of Gr = 12.5. Further. the friction ratio is smaller 
than unity for a wider range of ti, suggesting that the 
secondary flow due to buoyancy in a straight annulus 
is more vigorous than that in a curved annulus when 
K is not very large. The friction ratio for the case of 
s( = 0.8 and Gr = 12.5 is slightly smaller than unity 
when K is very small. We consider that this is essen- 
tially the same phenomenon as the less-than-unity 
friction ratio for the case of Gr = 12 500. When K 

is very small. the buoyancy effect is greater for the 
secondary flow than for the curvature effect and this 
secondary motion is somewhat stronger for a straight 
annulus than for a curved annulus, resulting in a less- 
than-unity friction ratio. Comparing the curves for 
Gr = 12.5 and 12 500, we find that the effect of radius 
ratio on the friction ratio is much smaller when 
Gr = 12 500. 

Heat transfer rate 
A common finding is that the secondary flow 

enhances heat transfer rates. To examine the heat 
transfer property for the present work, we first con- 
sider the energy balance of an infinitesimal element of 
length R dH. We have 

pC’,,@r(&r~)dT= 2n(r,+r,)RdQ&(T,-T,), 

(14) 
where T, is the local bulk temperature and T, is the 
wall temperature. The perimeter average heat transfer 
coefficient I? is expressed by 

,-- g+zh: 
1+a - (15) 

where /I: and 116 are the average heat transfer 
coefficient at the inner and the outer walls, respec- 
tively. Using equation (14), the overall average Nus- 
selt number taken for the annulus is given by 

- 2h;,, 
Nu, = -k- 

(y-r:) pC,r,, _ 1 d@ W, 
r, +r, k LUR d0 0, 

a8 d@ 
=(l-a)‘dPrRo,----, 

0, d8 (16) 
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l- 

Gr-i.26*10' 

FIG. 12. Variation of the overall average Nusselt number 
ratio. 

where Ro, is the Reynolds number based on the outer 
pipe radius and the subscript c denotes the curved 
annulus. The non-dimensional bulk temperature 0, 
is defined by 

Ov,rdrd+ 
Jo Jr, 

@In = 2n ss r0 (17) 
vor dr d+ 

0 I, 

The overall average Nusselt number for a straight 
annulus is similarly given by 

- 
Nu, = (1-a)‘PrRo,$$. (18) 

m 
-- 

The Nusselt number ratio Nu,/Nu, is obtained from 
equations (16) and (18). Figure 12 contains the curves 
of this ratio which clearly demonstrate that the Nus- 
selt number ratio behaves in the same manner as the 
friction ratio. We see that NuJNu, is proportional to 
K”’ when the Dean number is not very small, as has 
been observed in the case of the friction ratio. The 
dependency of the Nusselt number ratio on the Dean 
number and on the radius ratio is much greater when 
Gr = 12.5; when Gr = 12 500, the ratio does not 
change much with either the Dean number or the 
radius ratio. As was the case for the friction ratio, when 
Gr = 12 500, the Nusselt number for curved annular 
flow is not largely different from that for straight 
annular flow so that the ratio of the two is about 
unity. Similar observations for curved pipe flows have 
been made by Mori and Nakayama [ 13,141 and Prusa 
and Yao [3]. When Gr = 12.5, the Nusselt number 
ratio decreases with the increase of the radius ratio 
for a given Dean number and increases with the Dean 
number for a given radius ratio. On the contrary, 
when Gr = 12 500, the Nusselt number ratio increases 
as the radius ratio increases. Further, the ratio is a 

little smaller than 1 over a wide range of the Dean 
number, indicating that the overall average Nusselt 
number for a straight annulus is somewhat greater 
than that for a curved annulus. 

4. CONCLUSIONS 

Fully developed mixed convection flow in curved 
annular ducts with a constant wall temperature 
boundary was investigated numerically. The following 
was found. 

The secondary flow pattern is nearly symmetric 
about the (horizontal) dividing line when the cen- 
trifugal force effect is large compared to the buoyancy 
force effect. As the Grashof number increases, the 
dividing line rotates away from the horizontal 
position. If the Grashof number increases further, the 
secondary flow pattern exhibits strong asymmetry. 
When the Dean number is very small, MO, is negative, 
indicating that more mass is flowing through the inside 
half of the annulus. As the Dean number increases, 
MO, becomes positive, reflecting the outward shift of 
the flow due to the centrifugal force effect. When 
Gr = 12 500, MO, is negative. For a given radius ratio, 
MO, decreases with the Dean number up to a certain 
point at which MO, becomes minimum and then 
increases with the Dean number. 

When Gr = 12.5 (negligible buoyancy), the friction 
ratio and the Nusselt number ratio decrease as the 
radius ratio increases for a given Dean number. For 
a given radius ratio, these friction and heat transfer 
ratios are much greater than 1, signifying that the 
curved annular duct flow has more friction and heat 
transfer than the straight annular duct flow. It was 
found that the friction ratio and the Nusselt number 
ratio proportionally increase with rc112 when K is not 
very small. When Gr = 12500, the friction and the 
Nusselt number ratios do not change much with either 
the Dean number or the radius ratio. Interestingly, 
these ratios increase as the radius ratio increases, con- 
trary to the case of Gr = 12.5. When K is not large 
(say, smaller than 600), the friction and the Nusselt 
number ratio are less than 1, signifying that the sec- 
ondary flow in a straight annular duct is stronger than 
that in a curved annular duct, again contrary to the 
case of Gr = 12.5. 
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